首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61264篇
  免费   3761篇
  国内免费   1902篇
电工技术   1957篇
技术理论   5篇
综合类   4743篇
化学工业   11164篇
金属工艺   6522篇
机械仪表   1333篇
建筑科学   17290篇
矿业工程   2614篇
能源动力   1214篇
轻工业   4045篇
水利工程   3354篇
石油天然气   1872篇
武器工业   164篇
无线电   880篇
一般工业技术   3864篇
冶金工业   4800篇
原子能技术   251篇
自动化技术   855篇
  2024年   106篇
  2023年   480篇
  2022年   1150篇
  2021年   1499篇
  2020年   1364篇
  2019年   1006篇
  2018年   1050篇
  2017年   1335篇
  2016年   1394篇
  2015年   1616篇
  2014年   3755篇
  2013年   2872篇
  2012年   4287篇
  2011年   4541篇
  2010年   4071篇
  2009年   4211篇
  2008年   3310篇
  2007年   4479篇
  2006年   4312篇
  2005年   3671篇
  2004年   3017篇
  2003年   2715篇
  2002年   2282篇
  2001年   1787篇
  2000年   1382篇
  1999年   1083篇
  1998年   838篇
  1997年   669篇
  1996年   523篇
  1995年   498篇
  1994年   328篇
  1993年   234篇
  1992年   218篇
  1991年   166篇
  1990年   105篇
  1989年   130篇
  1988年   75篇
  1987年   66篇
  1986年   48篇
  1985年   45篇
  1984年   43篇
  1983年   35篇
  1982年   18篇
  1980年   7篇
  1979年   18篇
  1966年   9篇
  1965年   7篇
  1964年   9篇
  1959年   7篇
  1951年   4篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
21.
The effects of non-thermal plasma (NTP) on the physicochemical properties of wheat flour and the quality of fresh wet noodles ( FWN) were investigated. The results showed that NTP effectively decreased the total plate count (TPC), yeast and mould count (YMC) and Bacillus spp. in wheat flour. Wet gluten contents and the stability time reached the maximum when treated for 20 s. The viscosity of starch increased significantly after treatment due to the increased of damaged starch. The contents of secondary structure were altered to some extent, which was because that the ordered network structure of gluten protein broken. Furthermore, compared with the control, texture properties of FWN were enhanced significantly at 20 s, and the darkening rate of FWN was greatly inhibited due to the low polyphenol oxidase (PPO) activity. Consequently, the most suitable treatment was 500 W for 20 s, providing a basis for the application of NTP in flour products.  相似文献   
22.
23.
《水科学与水工程》2022,15(1):29-39
In this article, current research findings of local scour at offshore windfarm monopile foundations are presented. The scour mechanisms and scour depth prediction formulas under different hydrodynamic conditions are summarized, including the current-only condition, wave-only condition, combined wave-current condition, and complex dynamic condition. Furthermore, this article analyzes the influencing factors on the basis of classical equations for predicting the equilibrium scour depth under specific conditions. The weakness of existing researches and future prospects are also discussed. It is suggested that future research shall focus on physical experiments under unsteady tidal currents or other complex loadings. The computational fluid dynamics-discrete element method and artificial intelligence technique are suggested being adopted to study the scour at offshore windfarm foundations.  相似文献   
24.
Utilization of 3D nanostructured Pt cathodes could obviously improve performances of proton exchange membrane fuel cells (PEMFCs) owing to the reduced tortuosity and the bi-continuous nanoporous structure. However, these cathodes usually suffer from the flooding problem ascribed to the ionomer-free and nanoscale pores which are more susceptible to water condensation. In this paper, ultra-thin nanoporous metal films (100 nm) were utilized to construct PEMFC cathodes and independent transport channels were designed separately for water and gas aiming at the flooding problem. Nanoporous gold (NPG) film was used as the model support for loading Pt nanoparticles owing to its controllable and stable structure. After optimizing the polytetrafluoroethylene (PTFE) content and carbon loading in the gas diffusion layer (GDL), plasma treatment under O2 atmosphere was used to pattern the GDL with independent water transport channels. The obtained liquid permeation coefficients and oxygen gains demonstrated the obviously improved water and O2 transport. By using a home-made optimized GDL and a nanoporous film cathode with pore size ~60 nm, the flooding problem could be facilely solved. With a Pt loading of ~16 μg cm?2, this 3D nanostructured cathode exhibits a PEMFC performance of ~957 mW cm?2 at 80 °C. The Pt power efficiency is about 4 times higher than that of the commercial Pt/C cathode (50 μg cm?2, 756 mW cm?2). Obviously, this study provides a simple but effective methodology to solve the water flooding problem in the ultra-thin nanoporous film cathodes which is applicable for other types of 3D nanostructured PEMFC cathodes.  相似文献   
25.
《Ceramics International》2021,47(19):27217-27229
Herein, an in-depth analysis of the effect of heat treatment at temperatures between 900 and 1500 °C under an Ar atmosphere on the structure as well as strength of Cansas-II SiC fibres was presented. The untreated fibres are composed of β-SiC grains, free carbon layers, as well as a small amount of an amorphous SiCxOy phase. As the heat-treatment temperature was increased to 1400 °C, a significant growth of the β-SiC grains and free carbon layers occurred along with the decomposition of the SiCxOy phase. Moreover, owing to the decomposition of the SiCxOy phase, some nanopores formed on the fibre surface upon heating at 1500 °C. The mean strength of the Cansas-II fibres decreased progressively from 2.78 to 1.20 GPa with an increase in the heat-treatment temperature. The degradation of the fibre strength can be attributed to the growth of critical defects, β-SiC grains, as well as the residual tensile stress.  相似文献   
26.
Lung cancer is one of the most common malignant neoplasms. As a result of the disease’s progression, patients may develop metastases to the central nervous system. The prognosis in this location is unfavorable; untreated metastatic lesions may lead to death within one to two months. Existing therapies—neurosurgery and radiation therapy—do not improve the prognosis for every patient. The discovery of Epidermal Growth Factor Receptor (EGFR)—activating mutations and Anaplastic Lymphoma Kinase (ALK) rearrangements in patients with non-small cell lung adenocarcinoma has allowed for the introduction of small-molecule tyrosine kinase inhibitors to the treatment of advanced-stage patients. The Epidermal Growth Factor Receptor (EGFR) is a transmembrane protein with tyrosine kinase-dependent activity. EGFR is present in membranes of all epithelial cells. In physiological conditions, it plays an important role in the process of cell growth and proliferation. Binding the ligand to the EGFR causes its dimerization and the activation of the intracellular signaling cascade. Signal transduction involves the activation of MAPK, AKT, and JNK, resulting in DNA synthesis and cell proliferation. In cancer cells, binding the ligand to the EGFR also leads to its dimerization and transduction of the signal to the cell interior. It has been demonstrated that activating mutations in the gene for EGFR-exon19 (deletion), L858R point mutation in exon 21, and mutation in exon 20 results in cancer cell proliferation. Continuous stimulation of the receptor inhibits apoptosis, stimulates invasion, intensifies angiogenesis, and facilitates the formation of distant metastases. As a consequence, the cancer progresses. These activating gene mutations for the EGFR are present in 10–20% of lung adenocarcinomas. Approximately 3–7% of patients with lung adenocarcinoma have the echinoderm microtubule-associated protein-like 4 (EML4)/ALK fusion gene. The fusion of the two genes EML4 and ALK results in a fusion gene that activates the intracellular signaling pathway, stimulates the proliferation of tumor cells, and inhibits apoptosis. A new group of drugs—small-molecule tyrosine kinase inhibitors—has been developed; the first generation includes gefitinib and erlotinib and the ALK inhibitor crizotinib. These drugs reversibly block the EGFR by stopping the signal transmission to the cell. The second-generation tyrosine kinase inhibitor (TKI) afatinib or ALK inhibitor alectinib block the receptor irreversibly. Clinical trials with TKI in patients with non-small cell lung adenocarcinoma with central nervous system (CNS) metastases have shown prolonged, progression-free survival, a high percentage of objective responses, and improved quality of life. Resistance to treatment with this group of drugs emerging during TKI therapy is the basis for the detection of resistance mutations. The T790M mutation, present in exon 20 of the EGFR gene, is detected in patients treated with first- and second-generation TKI and is overcome by Osimertinib, a third-generation TKI. The I117N resistance mutation in patients with the ALK mutation treated with alectinib is overcome by ceritinib. In this way, sequential therapy ensures the continuity of treatment. In patients with CNS metastases, attempts are made to simultaneously administer radiation therapy and tyrosine kinase inhibitors. Patients with lung adenocarcinoma with CNS metastases, without activating EGFR mutation and without ALK rearrangement, benefit from immunotherapy. This therapeutic option blocks the PD-1 receptor on the surface of T or B lymphocytes or PD-L1 located on cancer cells with an applicable antibody. Based on clinical trials, pembrolizumab and all antibodies are included in the treatment of non-small cell lung carcinoma with CNS metastases.  相似文献   
27.
Femtosecond pulses from a Ti:Sapphire laser were used to irradiate specimens of yttria-stabilised (35% mol) tetragonal zirconia (Y-TZP) with the purpose of studying the effects of the irradiations on their surface properties and morphology after ageing. Zirconia disks were divided into eight groups (n = 32) according to their surface treatment and subsequent ageing: Control: no treatment; sandblasting: Al2O3 sandblasting 50 μm; and ultrashort laser pulses irradiation with 25 μJ pulses, considering two different scanning steps based on the width between two grooves. These groups were duplicated and submitted to ageing. The surfaces were analysed using scanning electron microscopy (SEM), and X-ray diffraction. A finite element analysis, a biaxial flexure test, as well as fractographic and Weibull analyses, were performed. The strengths of the disks were statistically different for the treatment factor, and the principal stresses seemed to be concentrated at the centre of the specimens, as predicted by the computer simulations. Ageing decreased the strengths for all groups and increased the Weibull modulus for the laser group with the 40 μm-width between two grooves. The sandblasting group presented the highest monoclinic phase peak. Although the most significant strength was found within the sandblasting group, the phase transformation was favourable to the laser groups. The Weibull modulus was higher for the laser group with the 60 μm-width between two grooves, confirming the highest homogeneity of its failure distribution. Regardless of the surface treatment, strength was decreased with ageing in all groups. The femtosecond Ti:Sa ultra-short pulse laser irradiation can be suggested as an alternative to the gold standard sandblasting in long-term Y-TZP zirconia rehabilitations, such as crowns and veneers.  相似文献   
28.
Despite being difficult to identify, extremely dilute oxygen vacancies have been widely reported to play an important role in enhancing magnetism in ZnFe2O4. The mechanisms underlying this enhanced magnetism have not been well understood for a long time and remain controversial because the formation of oxygen vacancy-rich ZnFe2O4 can be accompanied by changes in the chemical/physical characteristics, especially the composition, particle size, surface morphology and cation distribution, which can significantly affect the magnetization. An open and important question is whether and to what extent the enhanced magnetization can be attributed only to oxygen vacancies. In this study, the relationship between the magnetization and oxygen vacancies in ZnFe2O4 was definitively determined by using a carefully designed “shake-and-heat” treatment to prepare vacancy-rich samples while keeping the other crystal/surface parameters constant. Compared to the nearly vacancy-free paramagnetism samples, the vacancy-rich samples exhibited a higher magnetization of approximately 5 emu/g at both 300 K and 2 K. The Fe3+-O2--Fe3+ superexchange paths broken by oxygen vacancies then resulting in the Fe3+-Fe3+ ferromagnetism configuration. Meanwhile, the oxygen vacancy is highly diluted then the ferromagnetism configuration is confined in a single super-cell, favoring a short-range magnetic ordering at room temperature. The concentration of oxygen vacancies was calculated to be 0.68% by magnetization measurement. Our results may shed a light on how oxygen vacancies affect magnetism.  相似文献   
29.
Reducing micropollutant pollution of water bodies is an important objective of water management and an integral part of environmental policy. Ceramic nanofiltration membranes were developed as multichannel membranes of increased membrane area and rotating disk filters. The membranes developed show retention of over 80 % for PEG 400. The membranes are currently being tested for the separation of micropollutants from wastewater contaminated with pharmaceuticals. With the help of a downstream oxidative process, the trace substances remaining in the permeate are degraded.  相似文献   
30.
《Ceramics International》2021,47(24):34869-34880
This work complements an initial study regarding the mechanical behavior of MgO–C bricks at 1000 °C. In this case, two bricks bonded with phenolic resin, one of them containing aluminum, were treated at 600 °C and mechanically tested at RT and 600 °C. The thermal treatments attempt to simulate the in-service steelmaking ladle preheating process. At low temperatures, the binder pyrolysis is one of the main transformations and the Al melting neither its chemical reactions occur on a large scale yet. To evaluate the effects as the pyrolysis progresses, the soaking time at 600 °C was varied from 1 to 3 h. Although without significant chemical activity, the presence of Al affected the mechanical behavior of the tested bricks. The consolidation of the C–C network coming from the binder pyrolysis was identified as the main factor responsible for counterbalancing the material's degradation by microcracking. The heating combined with the low compressive pre-load applied on the tested specimens appears to close the microcracks and pores.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号